RAD-R165 225 IRIG FORMAT ‘B’ DECODERCU) OKLAHOMR STATE UNIV
TILLMATER ELECTRONICS LAB _J PEARSON ET AL JUN 85
SCIENTIFIC -4 AFGL-TR-85-8193 F13628-81- C—BO??/G 92

UNCLASSIFIED

i .) T : A
L j2s 25 L ahes ala s

l .O - s ‘c?f"c R
—— L AL

: —_— s m: »

' - fiz2

L === LB

: =

N
(3
~

L2 fhe

I

Al
o

\
'y

’ !

. i !
L .’
RQCOPY RESOLUTION TEST CHART

P07 6
|?:g:0:.:t:;:‘
KX

- -

$5-
AFGL-TR-0193

e

IRIG FORMAT “B" DECODER

load

John Pearson
Jerry Grayson

”,

AR

£

G o

Oklahoma State University
Electronics Laboratory - CEAT
Stilwater, Oklahoma 74078

ADAT

June 1985

Scientific Report No. 4

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

* AIR FORCE GEOPHYSICSLABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
’ HANSCOM AIR FORCE BASE, MATSACHUSETTS 01731

o e e A A

- -

S e B e e T T T e e T e T A A A S VLR SN SRR SARE AR G RE R SR SRSy
3* X gq' [P \1:-"’. o 4 L “ 1.',... IO .."-.*.«".."’ \‘; A"L-‘_'('-. “\ 4\ 9 -‘h’k,- ."' .‘.'(._" ..!‘ "’\-}\{{-",{-'\-\‘_'J‘ -'.-J‘ -(.\q'.-" o ‘-' -, N f\f v-: >
Y X 4 ¥ 3 N p P Al - N X, Iy " n ¥ " f) » o .

- w - e

’meum

"This technical report has been reviewed and is approved for publication"

A lruith,

(signature)
KENNETH R. WALKER RWSSELL G. STEEVES
Contract Manager Branch Chief

FOR THE COMMANDER

Division Director

This report has been reviewed by the ESD Public Affairs Office (PA) azd
is releasable to the National Technical Information Service (XNTIS).

Qualified reguestors may obttain additional copies from the Defense
Technical Informstion Center. All others should apply to the National
Information Service.

If vour address has changed, or if you with to be removed from the mzlling
list, or if the addressee is no longer emrloyed by your orgenization, jlezse
notify AFGL/DAA, FEanscom AFB, MA 01731. This will assist us in
maintaining & current mailing list.

YAy \'-' N AT AT N T ’-.; e
R S RS S

P e e s

L G GO ol s Nt

L it ol g ad

L
r‘l“.

W T W T T T YT P Ty

.—_._wURITV CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REPCRT NUMBER

AFGL-TR-85-0193

2. GOVY ACCESSION NO|| 3.

RECIPIENT'S CATALOG NUMBER

TITLE Cand Subtitle)

IRIG Format "B!" Decoder

5. TYPE OF REPORT & PERIOD COVERED

Scientific Report No. 4
6. PERFORMING ORG. REPORT NUMBER

AUTHOR(S)
John Pearson
Jerry Grayson

8. CONTRACT OR GRANT NUMBER(Y)

F19628-81~C-0079

PERFORMING ORGANIZATION NAME AND ADDRESS
Electronics Laborators - CEAT

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Oklahoma State University 62101F
Stillwater, OKlahoma 74078 765904BB

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Geophysics Laboratory June 1985
Hanscom Air Force Base, Mass 01731

13. NUMBER OF PAGES {

LA ada- o da: poc B ao - |

Attn: Ken Walker/LCR 22
t4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oflice) 1S. SECURITY CL ASS. (of this report)
{
Unclassified
15a. DECLASSIFICATION/DOWNGRADING
. SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)
9
Approved for public r:lease: Distribution Unlimited
17. DISTRIBUTION STATEMENT (of t1e adstract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
19. KEY YYORDS (Continue on reverse side {f necessary and ldentify dy block number)
Microprocessor, IRIG "B" Time Code, DEcoder, Single Task, Multi-task.
20. ABSTRACT (Continue on reverse side il neceasary a1d identify by block number)
This report describes a special ipplication of a microprocessor for decoding
a serial bit stream of data from an IRIG '"B" time code generator. The report
covers theory of operation, suggestions for improvement and modification and
a listing of the system software.
FOoM
EDITION OF ' NOV RS |S OBSe e
OD \Lan'7s 1473 15 0BSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dara Fntered

P

!.(.

.l.," ‘Q .

TR -

|
O AN T P LN 20 VIS8 SO0OREONEN

SUMMARY

The Oklchoma State University Electronics Laboratory has developed a
microprocessor-based IRIG format "B" real-time decoder. This circuit will provide a
paralle! BCD output to any device which requires this information. This decoder accepts
standard unmodulated IRIG "B" code and provides the time in a continuously available
parallel output. The 34 bit BCD output includes tenths of seconds, seconds, minutes,
hours, and days. This output is updated ten times per second. The system has a backup
timer which will be implemented when the system senses a failure of the IRIG input
signal. However, the system will return to its normal mode of operation upon return of
the IRIG signal.

National Semiconductor's NSC800 microprocessor has been implemented to
control the all-CMOS decoder. The system is based on software for the purpose of
reducing weight, parts count, power consumpfion and cost. Basically, the system is a
microcomputer which is programmed for only one task. However, the system is not
dedicated and other programs may be excecuted transparently. From a hardware point
of view, the same general system could be used as a basis for other NSC800-controlled

applications.

This report covers design details, theory of operation , and suggestions on

modifying the software to accomodate different clock speeds. In addition , a listing of

the system software is provided in the appendix.

P

P

r R T WOy WS W W W W WUy

-. -”,

> T e N
5;. .A.*-(‘ !‘\J_ - (SRnos

Jl.n.r.r.nf~‘1-_n

———“—-———mmm

TABLE OF CONTENTS
Topic Page

l 00 |NTRw£T|m..Q........l..........l...'..l.......l
2.0 S,)EC|F|CAT|mS...I...'.0..‘.....................lz
2.1 INPUTS.......... tcecscesectvescoccsesnosenl

2.1.1 Power Requirements....ccoeevaeeesl
2.1.2 Code Input..i.icieeeencsnsnnana Y

2.2 OUTPUTS i ittt eeneasesasssoasonnnonnasl
SYSTEM T'W BASEI..'...Q‘l............'.z

3.0 THEORY OF OPERAT:ON....vveeeerenacncsannns ceeaeeeed

HQrdWGre...-.o........-. oooooo .'0....0'.3

3.2 SOftWAI @ eerveeeeconeonosnsasosnnnossnsnsas 4

3.2.1 Primary Decoder Software......... 4
3.2.2 Back-up Timer Software...cecenee.. 7

4.0 ADJUSTMENTS .. .i.iiieereineeeonanncseassennes -

4.1 Accuracy of Back-up Timer....cvveeevesolls
4.2 Changing System Clock Frequency........ 14

5.0 SYSTEM DEDICATION,....... ceeeaens B

. Appendix A Complete software 1isting.ceeeeeeeeeenans 16

Figure No.

3.3

3.4

3.5

3.6

LI1ST OF ILLUSTRATIONS

Title

Block Diagram...ccceecees
Flow Chart....cceceuecese
IRIG-B Code Iflustration.

System Memory Map........

vi

hal mac 2ok Mol Aon A d 42 Aoa b AR A R Ak A A i A d A a4

Page

m

1.0 INTRODUCTION

The IRIG format 'B' decoder accepts serial unmodulated IRIG time code from an
external source and provid2s a parailel BCD time-of-year output. This output may be
used at any time by any device that requires this information.

Upon power-up , the circuit will begin searching for the IRIG framing bits. When
these bits are found, the system begins reading the incoming bits and formatting them
into digits. As each group of digits is formatted into seconds, minutes, hours, and days,
they are sent to the output ports and software buffers in RAM. This is the only frame
which will exhibit significant delays. The output for all further frames is controlied by
the software buffers and or ly refreshed by the formatted IRIG code. In this way , the
great majority of input-to-ostput delay is eliminated.

In the event of IRIG failure, an on-board backup timer will respond within
seventeen milliseconds to continue providing the necessary output, assuming that the
software buffers contained the correct time prior to failure. The backup timer will

continue until the IRIG code is resumed.

The system also incorporates a program-controlled hardware overseer which
checks to see that the CPlJ does not ever stay 'lost'. If the system becomes 'lost' for
more than 35 milliseconds, the system will be totally reset and begin searching for the

framing bits again. If no bits are found while searching for the fra. e, the backup timer

will take over.

TS
A .

. L, PP
AR, ’j“.'.,." \,\'-_*‘\-") % "

2.0 SPECIFICATIONS
2.) INPUTS
2.1.1 Power Requirement
i. Svolts D.C. at approximately 32 mA
2.1.2 Code Input
i. Format: IRIG B BCD serial time of
year, (Contro!l functions and straight binary seconds may be
included in the code and wil. not affect the operation of the
decoder).
i.i Amplitude: input logic high - above 3.5 vdc
input logic low- below 1.5 vde
i.i.i. Input Capacitance:10-15 picofarad
iv. Input to Output
Accuracy: Primary: 5.4ms delay max
Backup: accuracy is dependent
upon the system time base.
2.2 OUTPUTS
2.2.1 Code Output
i. Format: Parallel 34 bit BCD time of
year
seconds/ 10 4 bits
seconds 7 bits
minutes 7 bits
hours 6 bits
days 10 bits
i.i Amplitude: logic high, 5 VDC
logic low, 2mV DC
iii. External load: 500 ohms maximum
2.3 SYSTEM TIME BASE
i. Type Crystal Controlled Oscillator
ii. Frequency 2 MHz
2
e e e

...................

3.0 THEORY OF OPERATION

3.1 Hardware

Refer to the block diagram in Figure 3.3 or Schematic drawing number
D42CR@2. The heart of the decoder is the NCS800N CPU. In this application, the CPU
will respond to one of four possible conditions:

I. If IRIG is present, the CPU will be interrupted on every negative edge of
the incoming code.

2. If the IRIG input fails, the CPU will be interrupted by a failure timer that
has sensed the absence of the IRIG code.

3. If IRIG has failed and the CPU has been interrupted by the failure timer,
it witl then be interrupted by a 100 Hz self-generated pulse stream.

4. If the CPU gets lost, an automatic system reset will occur.

In case # I, when IRIG code is present, the NSC810 measures the duration of the
incoming pulses and makes this data available to the CPU. The CPU then determines
whether the pulse is a logic 'lI' , a logic '0', or a position marker. (see IRIG format
itlustration, page 12). Section 3.2 will discuss how this is done.

The interrupt caused by IRIG failure is produced by the NSC810 P10, (case # 2).
This chip will interrupt the CPU if the expected interrupt caused by incoming IRIG does
not occur within |7ms. Seventeen milliseconds was chosen since IRIG should interrupt
the system at least once every I6ms. When the NSC810 does interrupt the CPU, the
NCS810 is reconfigured to produce a 100Hz pulse stream that replaces the missing |00Hz
IRIG code and allows the dccoder to continue the time from where it left off prior to
IRIG failure, (Case #3)

In case # 4, the system will be totally reset if a certain "known" subroutine is not
executed periodically. This insures that if the CPU becomes "lost", the ertire system
will be reset. This is accomplished by restarting the 35ms CD4098 one-shot every time
the "known" subroutine is executed. Thus, if the CPU becomes lost, the first haif of the
one-shot will "time-out" and trigger the second half of the CD4098 which in turn will
hold the RESET line low for a short period of time.

The NSC810 P1O contains 128 bytes of useable R/W memory, 22 /O ports, and two
internal timers designated s a timer zero and timer one. The RAM is used for the
system stack, software flag storage, and timer buffers. Nineteen of the 22 I/O ports are
used for IRIG input and timer 1/O . Timer zero is used to cetermine the duration of the

incoming IRIG pulses. Timer one is used to look for the possible | 7ms absence of IRIG in

B A A AR A Iy

NN

the case of failure . Timer one is also used to produce the 100 HZ pulse stream when the

system is in its backup mode.

The NSC-831 is also a PlO, but contains only ports. The NSC83! (no ROM) was
chosen over the NSC830 (with ROM) since the development of the system would require
many software changes. This method will also allow the addition of other programs that
may be added to the existing 27C 16 EPROM.

Since the NSCB800 family utilizes multiplexed address cnd data lines, the 82PC1{2
demultiplexer was used to provide separate address and data I'nes to the 27C16 EPROM,
which stores the decoder software.

3.2 Software

The system software can be broken into two main segments- primary and backup.
Refer to the flowchart in Figure 3.4 (a) and (b). Under normal conditions, IRIG is being
read. The decoder output is a reflection of the incoming code and only primary software
will be executing. In the case of IRIG failure, the backup software will take over and
begin producing the necessary output until the IRIG code input is resumed. (See page 16
for a complete software listing.)

3.2.1 Primary Decoder Software

The primary or main program begins by initializing the output ports. These ports
may be used as inputs or outputs. In this case, all are configured as outputs except the
NSC810's port C bits 3 and 4 which are used as inputs by the imers. Upon power-up of
the system, all ports are automatically configured as inputs for the purpose of preventing
any ambiguous output levels from triggering devices that may be connected to these
outputs. A port in the input mode is in a high impedance state. In addition to initializing

the ports, two flogs described below are set to zero:

'OUTENBL' This flag keeps the software buffers disabled until the first
frame of IRIG has been decoded and sent to the ports.

OUTENBL = 500 during tte first pass of IRIG after power-
up. The software buffers are disabled.
QUTENBL = SFF after the first piss of IRIG. The software

buffers will be erabled until the system

restarts from power- up again.

w“ - e Ara 4k o die g Y oA i iR e

'BAKFLAG' The NSC-810's timer | is used for two purposes. It is used as
an IRIG failure timer during the primary program sequence and
as the 100 Hz pulse generator in the event of IRIG failure.
Since both timer functions use the same output, and hence the
same interrupt line, this flag is needed to differentiate
between the two functions.

BAKFLAG = 500 when timer | is configured as the IRIG

) failure sensor. The 100Hz pulse generator is
disabled.

BAKFLAG = $FF when IRIG has failed, timer | has been

configured as the 100Hz pulse generator, and
the program is in the backup mode. The |7ms
IRIG failure timer is disabled.

The next step of the main program is to find the framing bits of the IRIG code.
This is accomplished by testing each incorning bit until two consecutive position markers
(8ms) are sensed. This segment uses a subroutine called 'GET' which is responsible for
reading one incoming bit and determining what it is (i.e. fogic 0 or I, or position
marker). After the program is synchronized, the tenths and hundredths of seconds
counters are reset to zero. The hundredths counter increments once for every incoming
pulse. That pulse will either be due to incoming IRIG code or the system-generated
00Hz back-up pulse generator. When the hundredths count buffer, 'HUN', reaches ten, it
resets to zero and incrememts the tanths count buffer, 'TEN'. Then, as more pulses are
read, the tenths count increments until it is time to increment the seconds count,
minutes count, etc. Therefore, after the first IRIG code stream initializes these
software buffers, they contirue to calculate the present time every hundredth of a
second and send it to the output ports every tenth of a second. This way, the program
does not have o wait for the delayed IRIG serial data to be read and decoded each time
before it is sent to the ports. The IRIG time is simply sent to the software buffers once
per second as a reminder of what the bt ffers should contain. This insures that if the

incoming IRIG code is changed, or an error is produced by the buffers, the error will be

corrected during the next IRIG frame.

....... - 2 Sy ks Wmmw

Now that all ports and buffers have been initialized and the program has
recognized the framing bits, the program will begfn reading code. Since the incoming
code is pulse width logic, the NSC8I0's timer O is used to measure the length of each
incoming pulse. The process begins by calling the subroutine, 'GET'. This subroutine sets
timer 0 to a mode that causes it to act as a down-counter. [t begins decrementing from
a predefined 'modulus’ value whenever a positive transition occurs during the incoming
IRIG code. The modulus will decrement once for each 64 system clock pulses, and stop
decrementing after the IRIG pulse has dropped back low again. This function is also

determined by the timer mode selection.

Not only does the negative transition cause the modulus to stop decrementing, but
it also causes a CPU interrupt via RSTA. (Case #1 as discussed on page 3). When this
interrupt occurs, the decremented modulus value is read from the NSC810 and used to

calculate the width of the pulse and hence, the pulse's logic value,

In our case, the modulus was initially loaded with SFFFF. The system clock
frequency is 2 MHz which makes the timer effectively see an input frequency of
2 MHz /é4 = 31.250 KHz, resulting in an effective timer period of 32 microseconds.

Therefore,

PULSE WIDTH = (MODULUS -DECREMENTED VALUE) X 32us.

This width can then be compared to expected IRIG pulse widths to determine what

the pulse is. For this software the width definitions are:

Accepted Expected
Definition: Pulse Duration: Duration:
logic 'O’ less than 3.5ms 2ms
logic '1" 3.5ms to 6.5ms 5ms
position marker greater than 6.5ms 8ms

Before the defined bit is sent back to the calling routine, the software counters

are incremented by one hundredth.

Since IRIG code comes in the same code word structure every frame, (e.g.
seconds, then minutes, then hours etc.) we know when to expect each digit of the BCD
time. These BCD digits are then sent to both the output ports and to the "look-ahead"
software timer buffers where they overwrite any previous value. It is assumed that

under the expected conditions, though, the software-calculated time and decoded IRIG

" .
o o A >
\)3' .“:’1::'.0\".1'* :C.\\r \'JL NN, i\ .A\)\".A'\i‘f‘* -)' ,r

.........

-

~

time will be equal. After the DAYS value has been read and sent to -he ports and

buffers, the progrcm jumps back to the framing routine to get ready to read the next
frame.

The "GET" subroutine also sends a pulse to the automatic system reset circuitry
composed of the CD4098 monostable multivibrator. This circuitry is activated by
reading or writing to any memory location on page $30. If the system i: operating in
either the primary or backup mode properly, the "GET" subroutine will be executed every
tOms. Therefore, every 10ms a pulse is sent to the first half of the CC'4098. These
continuously-applied pui'ses keep the one-shot in its high state and prevent it from timing
out and producing a high-to-low transition. If the CPU gets lost and does not send the
retrigger pulse, after 35ms the first half of the one-shot will time out and “all from high
to low. This negative transition causes the second half of the CD4098 to jwil low for a
short period of time. Since the output is connected to the CPU's reset inpLt , the entire
system will be reset and the program will begin from location $0000 in ROM. This reset,
however, will not cestroy the contents of RAM. Thus, even if the system was in its
backup mode, a reset will only cause a small delay and will not destroy the timer buffers
or the software flags.

3.2.2 Back-up Timer Software

In order for the bock-up timer to function properly, it must first sense the absence
of IRIG code, update the software buffers, and then check for the returr of the IRIG
code.

The absence of IRIG input is detected by first realizing that the longest delay
between any two [RIG negative pulse transitions is 16 milliseconds. (See IRIG
illustration, page 12). On the negative transition of every IRIG pulse, a | 7 millisecond
timer is started. When the |7ms timer 'times out', a pulse is sent to the CPU via the
RSTA interrupt. Again, since the longest delay expected when reading R!G code is
16ms, if IRIG is still present, it should have already interrupted the CPU before the |7ms
timer did. The IRIG interrupt also disables all futher interrupts, and thus the | 7ms 'time
out' pulse will be ignored.

Now, assuming that the CPU has been interrupted by the IRIG failure timer, the
program jumps to the back-up timer routine. This routine generates a 100 Hz pulse
stream by reconfiguring the same timer that was just used for IRIG failure detection.

This new pulse stream simulates the 100 Hz IRIG pulse stream. Once this independent

pulse generator is started, the program returns to the framing routine in hopes of

i

%
L)

o

PLPA " ol i

re - O >

T o -

et -

- e e e s

t
)
L)

O J P O I L e o N P e T
R AR s eyl

detecting IRIG code again. Since the back-up routine was executed, 'BAKFLAG® has been
reset so that the IRIG failure detector is disabled, thus preventing the reconfiguration of
the 100Hz timer again. Both NMI and RSTA are enabled during the back-up routine
execution. This allows IRIG to regain control upon its return by interrupting the CPU via
the NM! interrupt input,

~nMT 1] oq re /6
. BACK - P INPUT

RSTA = 227
2 OUTAIT
oly < ' -t \
D iAo S
Y Q an (o-7) § ._____>
ARV K 4> 2 N
e Y
2 qlQ!
CNTL A 0 N D
. (4)
e PESET] ’) : 25
o — 14 - o 3 >
Arz-Ar¢ 10/M sl hmnd B Aamm ——{>c cE
An (0-7)
o > >
7HC /38 Q
RECORER N T ;?\
(4] J> q !
N Q} J|>
7117 4
Q| of o] o '
PUEY) RN Y
| CEO
S f I W o L—' ﬁl
e 7|] N f—_s_"
r o (0-7) >°£ s
Vg &
A (a-/0) Q
oME — > Ny N
SHOT § : &1
|
R
|A(o-7)
N —
cnre J
LS
‘ N
)
- E kl
Aafo-?: N

Figure 3.3 IRIC: 'B Decoder Block Niagram

O

'.."‘-;'...ﬂ" \ -,‘"-" »1 -'_;\;. - \'_,\1 Yy \
.‘n‘(.'»}x}v“:m’{ i ‘.*»{{ﬂ{'\ﬂ'(ﬁ“

.' -", : ¥
M\{\"aﬂs&\‘: ‘fﬁ. OCen .

"

o B 10 47 87 A"
U ORI

MABIN PROG RAM
Srerr

INITIRLIZE STRCK,
FLAG S, anR rFor 7

CcRLL GET

lLsr

Rrr 18 N
POSI7rION
MAREER

FRAME SYANC

POSrsr7T/ON
MARKEL

CALL LET 8 F/mES TO
DETELRIMIIN E SECONDS

'

SENRD NATA TO
PORTS ANOD BUFFERS

RE-FRAME

rc ONTINUE RABOVE PROCENURE 70O 1

| CETERMINE MINCUTES, HOURS, |
Ano DAYS !

e]

Figure 3.4 (a) Main Program F owchart

10

I (O W N T I e o et A e e S o
RSO e OEDCERIO RN u‘!‘t\?- o &Eﬁthﬁ)}ﬂfah

bl gl L e fR A aaa s aih ik uid

SEND RESES PREVENTION,
PuLsE VA PasE £ FO
SELECT :

WARAIY FOR TAHE NEXT
INCOMING /78180 PLICSE

WA/ TEZ D
APORE THI AN
/17 ms

YES EXECUTE
ABAcK -UP

CONTINUE REPDING 1/2/6

INTELRRUPLPTELD rA NPT INTERRUPTELD VrRA ST R

l

AP ENSLIRE LENBTA OF PLULSE

Srmrr /100 M2
PuLSE /S A | BACKk -UP PULSE

Lo Z2Erd | GENERATOE

{
3
)
ptl—— \l
' ;
&£/5A UPRATE
LoGre ‘ONE’ SOFTHWARE
COUNTERS
PuissE +S A
POSr 7TION MMRCKER
;
UPRDATE SOFTWARE
COUNTERS
~ RETWRA WITid /31T
IN ACCUMULATOR RETUZAN ;
\]
\]

F qure 3.4 (b) Flowchart of Subroutines

B~y

\
D k*;..‘,: e ROA e

o A . X ORI we
i 1.&‘\2-')0“.\‘1“".\' l"‘t‘.’i AN "-lb P ‘:‘ A2 I‘!‘ 5!‘-‘, ORI .:..‘l ‘."‘}’fn,! i,

— —

TN RN W TSN N — T ———" Wy T W — .~

1301 ANJWNTOA O 3DN3IUI A
3G0J Sdd 00}
¢08 TVHNDI3
8 1viid04 QUVaNvLS Didl

i!.ﬂi:!i:t&a.
B1ANIOJ SHUY LV 3N

-

POIO[NPOW UOUM ZHY § CADNINDIUS HIIUHYD 9
‘(poleinpow) puodas
i § (pejeinpowun) spLOdeSIINW O} INOILNIOSIH L
(CUNIINIQI
NOILISOd pucdds oyl jo eBpa OCuipea; oyl s| 'si9)
~8J QHOM 300D BY1 Ydim 0} ‘utod oun]-uQo,, 2ul)
‘SHIISILNTAI NOILISOd 9A1INd9S
«U02 OM| :puU09s Jad dUO ~ HINHVYN FONIHIJIY e
SpUOISIIIW g (uoNBIND HIIJILNIAI NOILISOd P
(douo Aseung)
§PUODDSI!W G (UoHEIND [1D1Q 30D D
(judwal3z popodun 10 0102 Asvutgg)
$pUOdASHIW g luonenp YINYVW XTIANL'q
‘0bpo Gupedy
S]] 8] JUewei3 ydoeo 10} ui0d O0UDIDIDI L Owl]-uQ, @
‘NOILVOLIILNIAI ANIWNIAIIT P
(ojeyy owesr4) pLUOIDL 40D D
(etey HAIHLNIAI AILISOJ) pu0ddsS 1od 04 'q°
(0181 Juowodg dIsLq) PUODS K34 QO '8
:37dYTIVAVY S3LvH wa_zm._w..m

*18J1) 821200 :1191Q ANVDIJINOIS LSYIT1 ‘Y
‘SIUBWO|B
popod-A1eviq YI0L PUB YIg OUl L20Mioq HIIdIL
-N3Q1 NOILISOd ® Yiim Jnd30 sjuowoie papod-Areuiq
UadUaADS ‘08 INNOD X3ANI le suibaq piom @S q
'UoHN|OSdY
(ensia Joj uonesedos epiaoid 0} dnosB yoed ‘ut sIBIP
jewoap veamidq sINdJ0 HIIZIINIAI NOWLISOd v
*813|dwo2 $1 HOM Q0D 3ul 11un (sAep Jo} ud) 'sinoy
JOj 1S 'SOINUIW JO} UDADS 'SPUODIS JO) UDAIS) SINIW
=313 U HNIA) NOLLISOd U29MIDQ INDI0 SIUDWID
papod-Aseuig ‘} ANNOD XIANI 18 suboq piop :adQ ‘e
B3UALONULS QUOM 3000 '
{66C00) 'S1N0Y $Z YOLD EPI0AD0Y "AlUO SPULIDS .w 1)
‘spop
Aieuiq £t — GHOM 300D Acg-jo-own | Kreurg e 'q
‘APLOA SOIDAIDY 'SALP PUL SINOY 'SIINUIL ‘SPUODDS (1)
'sH6p Arewq 0g
- AUOM 300D seoA-jo-owtf jewiddg popo) Aeuig e
4109 J0 S ‘04 :SNOILJO DNILHOIIM 11910 3A0I T

‘PUOIBS 0') :JNVHI INIL'L

TYHINID -8, iYWHO4 DIl

roucoetIl B VONSng
. Sy ¥ODV| PUCOSD-1G O INOAL.

RNGA) twe 100
[] .!533-0—

g

ON O ONO0Y D2 O

(TH 0001) YIBHVD OILVINGON TYIIdAL

ot 99l ot el 4 .,

AR er;

. 1
UV TV VLT e T o vy
Hq_ - \ _ \ J o eV \ J \ A,
) | v v
_mazsmwﬂ%uu.wh.ﬂc.(x—m. SNOILINNS TOHINOD _ SAVO _— nvnwz_““v»zoon eINNIN SONOD IS _
anu NO
SONOD3S 100 NI 3WIL —

T N D N S T

-d\-—qﬂu-—-1qq—<-¢-—-j-]—l—l-l-—’u-.—--\-qqq-d—-dd-

(1} (] os ' or

q--—--_dJQd—J-u—-J-—qdﬂq—--

\AAAERRRA
o o0 o °

anNo238 ¥ 3nvud awu

12

t
o

ARG

AN

8.}

.q*‘”-‘

MCAICR TR W
Iy ""\" !

X 't .‘

L]

~ TR > C e i‘i‘?

-
d

»

u.
<
-

hy

-
0

e
]
¥

B2 . N ¥

.

. ’sb’qal; ;i"»

i

r-Y-Y-Y-X
LeLoncr
SOFTrwWrRE ON
ErRoM (27/6) 0274
BURILABZLE ON °z77=
EPRD AT
¢ (2716) OTFF
o800 -
. UNAVAILABLE
OFFF
1000~
PURILARLE
1 FFF
2000 -
A/SCB8B/0 /ZAr
207~ -
2080~ '
UNAVAILABLE o:
2FFF oo- "
3000 — :
UANNRVAILABLE i
FEFF {
__ ‘o000~— "
AVAIrL ABLE]
FEFF N
8000~ '
UNRVAICABSLE
B .
9000~ A
a3/ Poers .
y 1-X-V oo hy
9010~ F
UNAVAILARLE .
acFrF X
810 PORTS Aooe N
ANA T IAERLS N
RO/F)
RO20 -
UNAVAILARLE Y
FFEFF FF \‘:
:
¢
MEMORY MAP r/o MaP R

Fiqure 3.6 System Memory Map

4.0 ADJUSTMENTS
4.1 Accuracy of the Back-Up Timer

The back-up timer accuracy is directly dependent upon the occuracy of the
system's timebase, since the 100 Hz pulse generator is produced by counting a
predetermined number of clock periods from the CPU's clock output. The frequency of
the back-up timer can easily be set to 100Hz and fine tuned with small changes in the
CPU's oscillator input frequency. Presently, under software control, the tuning
resolution is in steps of 5.0003 milliHz for every one-digit change in timer I's modulus

value,
4.2 Changing System Clock Frequency

Although the decoder relies totally on the CPU clock frequency of 2 MHz as a
reference for all timing operations, a change in the system's clock frequency requires
only minor changes in the decoder's software. The range of acceptable CPU speeds
depends upon the mode of the NSC810's timers, and the initial value of the timer's
modulus. For a more complete description of the operation of the timers, see National
Semiconductor's NSC810 product description.

If the system clock frequency is increased or decreased, the modulus will
decrement faster or slower, respectively. Therefore, it is necessary to make changes in
the software routines which use this modulus value to define the incoming pulses, both
primary and backup. The following general procedure can be followed.

If the frequency is increased, the numbers that the modulus is compared to (after
the incoming IRIG pulse has caused the modulus to decrement to a certain value) will
need to be changed since the modulus will be decrementing faster. (Refer to the 'BIT'
subroutine in the software listing in appendix A). These numbers are easily calculated.

For example:

Incoming position marker has a pulse width of 8ms

CPU Clock Period = 0.5us

Timer input PRESCALE = divide by 64 (defined by timer mode)
2 Byte modulus (also defined by timer mode)

Therefore, the modulus value will decrement every (64 X 0.5us) = 32us.

The expected modulus value ofter an 8ms pulse has been read by the timer would
be SFFFF«8ms/32us)= about SFF05. A two byte modulus was used since a one byte

A A AT

R R R A LA . A
Aoy, AR R N R Y N

modulus can only measure @ maximum width of $FFX32us = 8.16ms. If the position
marker was longer than 8.16ms, a one byte modulus would cause an error. If a two byte
modulus was used, the high byte would simply decrement by one every time the low byte
reached zero. Therefore, to determine what each pulse is, the high byte of the modulus
is checked to see if its least significant bit is equal to zero since the high byte will
decrement from SFF to SFE. If so, we assume that the pulse is a position marker in
excess of 8.16ms. If the LSB of the high byte is still a 'one', the pulse must have been
fess than 8.16ms. The low byte is then checked for greater than 145 which represents a
time less than 3.5ms. A count greater than |45 indicates a logic zero and a count less
than 145 indicates either a logic one, or a position marker less than 8.1éms long. If the
count was less than 145, it is checked for greater than 52. If the count is greater than
52, the pulse was more than 3.5ms long and less than 6.5ms, indication that pulse was
probably a 5ms logic 'one'. If the count was less than 52, it is assumed that the pulse

probably was a position marker shorter than 8.16ms.

Since one of the above three pulses will occur every 10ms, the software timer

buffers are incremented immediately after the pulse has been defined.

5.0 SYSTEM DEDICATION

The decoder was designed to be as non-dedicated as possible to the single task of
translating IRIG code. The system uses only two of the available five interrupts to
accomplish the decoding. Presently, after the program decodes ecch pulse it waits for
the next one by halting the processor and enabling the interrupts. The processor waits
anywhere from 3ms to |5ms before the next IRIG bit interrupts the CPU from its HALT
state. Since execution of the primary program takes less than 500us, at least 2.5ms are
available out of every 10ms for other tasks before the CPU is expected to be interrupted
again. [f the program is in the back-up mode due to IRIG failure, the 100 Hz interrupt
sequence is self-generated and predictable. Therefore, in the back-up mode there is at
least 9.5ms of CPU time available out of every I0ms. Any auxilliary program may be

executed during this period in the primary or backup mode as long as it either returns to

.cj the decy“er program prior to the next expectea IRIG pulse or makes sure that the RSTA
:":3 interrupt is enabled so that IRIG or the bac't-up timer may interrupt the auxilliary
ts program when needed. It is also imperative that the CPU stack be restored to its
a) origina! state prior to returning to the decoder program.

.__(:‘?

-

T me——

APPENDIX A

IRIG B DECODER SOFTWARE LISTING

16

EOSUINLAC AN
,!,‘it. . ,;’r,\‘.i‘,‘.

(900,

ASEG
.280

ERANEARNRANARNE N

;P10 related definitions

MDRQ

1RIG FORMAT

WPTI BT S ey gy w— -n-:‘—-v-uv—u.....—l

‘B' DECODER SOFTWARE LISTING *sssasnananwanasunan

e LT TP —— DEFINITIONS === e oo oo

EQU QAOQO7H ;mode definition register address
TMRO EQU OAQ18H ;jtimer 0 mode register address
MDO EQU 00H ;mode definition register set for BASIC 1/0
TMO EQU 110110118 ;timer 0 mode set for pulse width meas'mnt
TIMERO EQU OAOL1O0H ;modulus value address.... timer 0
TOSTAR EQU OAO1SH ;write causes timer 0 to 'start'
TOSTUP EQU OAO14H ;a write causes TO to ‘stop’
TMR1 EQU OAQ19H itimer 1 mode register address
TMIDEL EQU 010110018 iTimer 1 Mode set for a 17mS delay
TM1PULS EQU 01011001B :Timer 1 Mode set for 100Hz pulse generator
TIMRONE EQU OAO12H ;T1 modulus address
T1STAR EQU OAO17H sTIMER 1 start address
T1STOP EQU OAQl16H ;TIMER 1 stop address
ICR U 0BBH ;s INTERRUPT CONTROL REGISTER
DDRA EQU 0A004H ;s ADDRESSES OF NSC810 DDR'S
DDRB EQU OAOOSH
DDRC EQU OAOO6H
PORTA EQU OAOOOH ;ADDRESSES OF NSC810 PORTS
PORTB EQU OAOO1H
PORTC EQU 0A002H
DDA EQU 9004H ; ADDRESSES OF NSC831 DDR'S
DDB EQU 9005H
DDC EQU 9006H
PRTA EQU 9000H
PRTB EQU 9001H ;ADDRESSES OF NSCB31 PORTS
PRTC EQU 90024
H
HUN EQU 2000H 1 LOCATIONS OF SOFTWARE TIMER
TEN EQU 2001H H BUFFERS
SECND EQU 2002H
MINUT EQU 2003H
HOUR EQU 2004H
DAYS EQU 2005H ;low B bits of DAYS
DH EQU 2006H ;+ high 2 bits of DAYS
BAKFLAG EQU 20074 ibackup 100hz pulse generator enable
OUTENBL EQU 2008H ioutput enable for software timers
STACK EQU 2080H
AOKAY EQU 3000H
H
H
:
H
ORG 0000
Jp START $1SKIP OVER INTERUPT VECTORS
H
R e S Iy VECTORS === mm e e e
H
ORG 3CH
CALL BACKUP ;RESTART [A]) interrupt vector
PoOP AF 1 simulate returns from
POP AF H RSTA & ‘'GET'
JP FRAME1 icontinue checking for irig
H
ORG 66H inon-maskable interrupt vector
EX AF,AF
LD A, (BAKFLAG)
cP O00H
3R Z2,EXCH
P START 1since we have interrupted the execution
EXCH: EX AF,AF ;of RSTA, we will start back at square 1
::#L BIT 1 since the stack is probably messed up

'I:g:l

o

{RETURN FROM NM1

Y -
:““c"‘lh \l&‘ A A

2 e ——————— -

-

START: LD

The
markers.
incoming
and then

[R I T R O R R R

RAME]l: CALL
LD
cp

FRAME2: CALL

80H

A,0

’
(OUTENBL) ,A

A,OFFH
(DDRA) ,A
(DDRB}) ,A
(DDA) ,A
(DDB) ,A
(DDC) ,A
A,274
(DDRC) ,A
SP,STACK
A0

{BAKFLAG) ,A

GET
A,C
OFFH

NZ,FRAMEl

GET
A,C
OFFH

NZ,FRAMEL

A,0
(HUN) , A
(TEN) ,A

'-““u'u'r-v-vvuw

;itop of RAM
:set up DDR's of ports
ithese ports has inputs

:NSC810's PORT 'C' has.some inputs
;set up stack in NSC810°'s top of RAM
iclear the backup flag

------------------------------- MAIN PROGRAM === —=meo e m e es

primary program checks for the presence of the 2 IRIG

When these are found, the program begins reading the

code. The code is input in serial, changed to parallel,
sent to the parallel output ports. Inaddition to being sent
to the ports, the time code is also sent to the software gimers
which update the ports every 10 milliseconds, and thus eliminate
most of the INPUT-to-OUTPUT delay error.

sthe program will fall through this loop
; only when 2 consecutive pulses grea'~er
; than 6.5 mS are detected

3 (MARKERS)

ireset hundredths and tenths buffers

sNOW WE'RE IN SYNC, SO LETS START READING TIME CODE

3

SEC: CALL
LD
LD

H

MIN: CALL
JR

H
CALL
LD
LD

i

HOURS: CALL
CALL
JR
CALL
LD
LD

DYS: CALL
CALL
JR
CALL
CALL
LD
CALL
CALL
OR
LD
LD

C AP a9 s e i
R ".‘ ’l{ﬁ

DIGITS
(PORTA) ,A
(SECND) ,A

CHECK
NZ,FRAME1

DIGITS
(PORTB) ,A
(MINUT) ,A

GET
CHECK
NZ,FRAME1
DIGITS
(PRTB) ,A
(HOUR) ,A

GET
CHECK
NZ,FRAME]L
GET4
SHIFT
B,A

GET
GET4

B
(PRTA) ,A
(DAYS) ,A

iget the first 2 digits of seconds
isend seconds to port
1send seconds to buffer

tthis bit should be an 8mS marker
1 if pnot, get re-framed

1get next two digits
s6end minutes to port
;send minutes to buffer

tignore this bit
imake sure this one is a position iden-
;] tifier (8ms marker)

18end “ours

tignore this bit
1check position again

1s8ave <A>
tignore this one
J1get the next 4 bits

tsend 1st 8 bits to ports
;8end to buffer

A-2

e T Ty YT WYY TRV 1 MLY) Myy sSlLAeTl s R R ST R o e e el e e
Y

>
-~
P-“.O
THERE: CALL CHECK ;check position
JR NZ,FRAME]
CALL GET
LD B,C
SRL B ;now, get the last 2 bits of DAYS
CALL GET ; to determine the MSD
LD A,C
P OR B
RLC A
5 RLC A
2 LD (PORTC) ,A ;send final digit to port
vy LD (DH) ,A ;send to buffer
ik LD A,OFFH ;enable the buffer outputs
. LD {OUTENBL) ,A
.!;: JpP FRAME1
D ; :
fﬁ' Jeeeesasescsensensessess MAIN PROGRAM SUBROUTINES .evcveveccscscrennas
WY, i
e) DIGITS: PUSH BC ; this routine expects a certain
M CALL GET4 : sequence of 8 incoming bits
' CALL SHIFT ; to represent two IRIG digits
LD B,A
RalX CALL GET4) : The two BCD digits are returned
K, SRL A i in the accumulator - the lst
N . OR B 3 in LSB position.
20 POP BC
h RET
\.(:
té CHECK: CALL GET ;this routine checks to see
LD A,C ¢+ if the next bit is an 8mS
‘ CP OFFH ; position identifier as expected.
~ RET ; If it is not, an error has
;'- ; occured and the program must
.t 3 re-frame
’: H
h . SHIFT: SRL A :This routine shifts the
0 SRL A ; upper 4 bits of the accum.
SRL A 3 into the lower 4 bits
v SRL A
:‘- RET
N !
j H
o 3
: GET4: PUSH BC ¢+ This routine gets the next 4 bits from
o) CALL GET sthe incoming code string and returns them in
LD A,C ithe upper nibble of <A>.
i SRL A
‘ol CALL GET
> OR c
> SRL A
> CALL GET
: OR c
D SRL A
CALL GET
7 OR [
o POP BC
. RET
ﬁw :
' $
f.: GET:
n. H
H This subroutine waits for the next incoming pulse (or bit) and
- ;returns in the <C> register a unique value depending on the
) icomputed definition of the pulse. :
2 H The incoming pulse causes an interrupt through $0066 interrupt
"4 jvector, the interrupt service routine is executed, and then returns
. ito this routine. The program then returns to the calling program
.H twith the calculated bit definition in register <C>.
L H While waiting for the next expected IRIG pulse, a 17ms timer
118 started. If this timer reaches zero before the next IRIG pulse
. 1is sensed, the program will assume IRIG has failed, and will begin
:ﬁ‘ sexecution of the BACKUP routine.
)
o
Yy
vy, A-3
(L

N et ¢ 4 M PR Yo OV R S A M N R R A A R N
B T Pt T, ot oy Aot o R e KR QNS

X oo P AL
SRS

PUSH AF

LD A7

LD {TMRO) ,A ;reset TO

LD A, TMO ;1load timer 0 with the desired
LD (TMRO) ,A ; timer mode

LD A,MDO ;set mode definition register

LD (MDROQ) ,A

LD HL,OFFFFH ;load timer 0 MODULUS with SFFFF
LD (TIMERQ) ,HL

LD (TOSTAR) , A ;enable the timer

: If IRIG is still on, we should not make it all the way through the
;following 17mS delay caused by Tl. If we do, it indicates IRIG failure,
;and we will jump to the backup timer routine.

LD A, (BAKFLAG) ;if BAKFLAG=0, we will execute
CcP OFFH ; the code immediately below
JR Z,WALT ; {this starts our 17ms timer)
LD A7
LD {TMR1) ,A ;reset Tl
LD A,TM1DEL ;set-up timer to create delay
LD {TMR1) ,A
LD A,42H
LD HL,4268H sthis 2-byte modulus, ($4268), will produce a
LD (TIMRONE) ,HL t+ 17ms count-down delay
Lp {TISTAR) ,A ;start the delay
WAILIT: LD A,08H ;un-mask RSTA in the I.C.R
ouT (ICR) ,A
LD A, (AOKAY) :send acknowledge pulse via PAGE 30 select
POP AF ;enable both NMI and RSTA and wait
El ; to see which is first
HALT ; (any other program may be executed here!)
;Return to here from interrupt service routine
RET ;jreturn from °‘'CALL GET'
:
BIT:
—m——————— et e NMI interrupt service routine —--=--ccmcecccccccea- w———-

««a0.. INTERRUPTED BY IRIG CODE ONLY

. % we we

LI R R I I R I O N N N S A R R)

PUSH AF
LD (TOSTOP) ,A 3 stop timer 0
LD HL, (TIMERO) ;jget count from timer
BIT 0,H itest bit 0 of high byte
JR Z ,MARKER ;ja marker if >8.16ms
LD A,L
CP 145
JR NC,ZERO
cp 52
JR NC,ONE
MARKER: LD C,0FFH ;long count is position identifier
CALL UPDATE
JR SKI1P
’
2ERO: LD c,0 ;pulse is a logic zero
CALL UPDATE
JR SKIP
’
ONE: LD C,80H ;medium count is a logic one
CALL UPDATE
H H
SKIP: POP AF sreturn from 'BIT' i
RET
H
BACKUP:
H
jomessme- RSTA interrupt Bervice routine ==ee—mecm oo eecceee o

$ececeecs. INTERRUPTED BY TIMER 1 ONLY

s ssessssseesses e

A-4

-

PUSH HL
LD HL, (TIMRONE) ;jread Tl modulus to reset T1 output
POP HL
PUSH AF
LD {TOSTOP) ,A ;the first time through the routine,
LD A, {(BAKFLAG) ; BAKFLAG=$00
cp OFFH : 1f BAKFLAG=S$FF, we will skip
JR Z2,CALLUP ;jcode immediately below to save time
FIRST: LD A,0FFH ;set backup flag
LD {BAKFLAG) ,A
LD A,TM1PULS ;configure T1 for 100Hz pulse generator
LD {(TMR1) ,A
LD HL,9971 ;1oad MODULUS with 9971 to create a
LD {TIMRONE) , HL ;100Hz timer that produces one active
;low output pulse every 10ms to cause
;an RSTA every 1l0ms.
; Note: this MODULUS value is determined
;somewhat by trial and error since the
;execution of the program also adds
;to the delay.
LD (T1STAR} (A ;start the pulse generator
CALLUP: CALL UPDATE ;increment the software timer
POP AF
RET 1go back and check for IRIG again
1
UPDATE:
jom————- SOFTWARE TIMERS---===ccmeca-- ————— Femreeccrmeercmceccrcececeem—————

2e¢e..WE SHOULD PASS THROUGH THIS LOOP EVERY 10MS ..ccevevecccecses

[
LD
INC
LD
cp
RET
XOR
LD

H
TENTHS: LD

H

SECONDS: LD
INC
DAA
LD
(o4 4
JR
XOR
LD

H

MINUTES: LD
INC
DAA
LD
cp
JR
XOR
LD

}

HRS: LD
INC
DAA
LD
cp
JR
XOR
Lo

A, (HUN)
A
(HUN) ,A
10
NZ
A
(HUN) ,A

A, (TEN)

A

(TEN) ,A
10
NZ,0UTPUT
A

(TEN) ,A
A, (SECND)
A
{SECND) ,A
60H

N2 ,0UTPUT
A
(SECND) ,A
A, (MINUT)
A
(MINUT) ,A
60H
NZ,0UTPUT
A
(MINUT) ,A
A, (HOUR)
A
(HOUR) ,A

24H
NZ,0UTPUT
A

(HOUR) ,A

tincrement the hundredth's count
; on every pass ----

t1-~--then see if anything else

; needs to be incremented also

sread buffer

iincrement seconds count

;jchange to BCD

;replace incremented seconds count

swas count=607?

1if not, just print all values again

;1if so, reset to zero and then increment
] the minutes counter

WEWwREKW T e wE e e -‘-—7'

’
DAZE:

i
OUTPUT:

e

RETURN:

A, (DAYS)
A

(DAYS) ,A
0

NZ,0UTPUT
A, (DH)

A

{DH) ,A

A, (OUTENBL)
OFFH
NZ,RETURN

A, (TEN)
(PRTC) ,A
A, (SECND)
(PORTA) ,A
A, (MINUT)
(PORTB) ,A
A, (HOUR)
(PRTB) ,A
A, (DAYS)
(PRTA) ,A
A, (DH)
(PORTC) ,A

jcompare to zero since 99+1200 & <C>=l

scheck the flag
;joutput is enabled if FLAG=SFF

TPV T U YT Y

